extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xDic3).1C22 = C12:2Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).1C2^2 | 96,76 |
(C2xDic3).2C22 = C12.6Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).2C2^2 | 96,77 |
(C2xDic3).3C22 = C42:7S3 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).3C2^2 | 96,82 |
(C2xDic3).4C22 = C42:3S3 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).4C2^2 | 96,83 |
(C2xDic3).5C22 = Dic3.D4 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).5C2^2 | 96,85 |
(C2xDic3).6C22 = C23.9D6 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).6C2^2 | 96,90 |
(C2xDic3).7C22 = Dic3:D4 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).7C2^2 | 96,91 |
(C2xDic3).8C22 = C12:Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).8C2^2 | 96,95 |
(C2xDic3).9C22 = Dic3.Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).9C2^2 | 96,96 |
(C2xDic3).10C22 = C4.Dic6 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).10C2^2 | 96,97 |
(C2xDic3).11C22 = D6.D4 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).11C2^2 | 96,101 |
(C2xDic3).12C22 = D6:Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).12C2^2 | 96,103 |
(C2xDic3).13C22 = C4.D12 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).13C2^2 | 96,104 |
(C2xDic3).14C22 = C12.48D4 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).14C2^2 | 96,131 |
(C2xDic3).15C22 = C23.28D6 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).15C2^2 | 96,136 |
(C2xDic3).16C22 = C12:7D4 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).16C2^2 | 96,137 |
(C2xDic3).17C22 = C23.23D6 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).17C2^2 | 96,142 |
(C2xDic3).18C22 = C23.12D6 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).18C2^2 | 96,143 |
(C2xDic3).19C22 = D6:3D4 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).19C2^2 | 96,145 |
(C2xDic3).20C22 = Dic3:Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 96 | | (C2xDic3).20C2^2 | 96,151 |
(C2xDic3).21C22 = D6:3Q8 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | | (C2xDic3).21C2^2 | 96,153 |
(C2xDic3).22C22 = Q8oD12 | φ: C22/C1 → C22 ⊆ Out C2xDic3 | 48 | 4- | (C2xDic3).22C2^2 | 96,217 |
(C2xDic3).23C22 = C4xDic6 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).23C2^2 | 96,75 |
(C2xDic3).24C22 = C42:2S3 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).24C2^2 | 96,79 |
(C2xDic3).25C22 = C4xD12 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).25C2^2 | 96,80 |
(C2xDic3).26C22 = C23.8D6 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).26C2^2 | 96,86 |
(C2xDic3).27C22 = C23.11D6 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).27C2^2 | 96,92 |
(C2xDic3).28C22 = C23.21D6 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).28C2^2 | 96,93 |
(C2xDic3).29C22 = S3xC4:C4 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).29C2^2 | 96,98 |
(C2xDic3).30C22 = C4:C4:7S3 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).30C2^2 | 96,99 |
(C2xDic3).31C22 = C12:D4 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).31C2^2 | 96,102 |
(C2xDic3).32C22 = C4:C4:S3 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).32C2^2 | 96,105 |
(C2xDic3).33C22 = C2xDic3:C4 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).33C2^2 | 96,130 |
(C2xDic3).34C22 = C2xC4:Dic3 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).34C2^2 | 96,132 |
(C2xDic3).35C22 = C23.26D6 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).35C2^2 | 96,133 |
(C2xDic3).36C22 = C4xC3:D4 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).36C2^2 | 96,135 |
(C2xDic3).37C22 = D4xDic3 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).37C2^2 | 96,141 |
(C2xDic3).38C22 = C23.14D6 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).38C2^2 | 96,146 |
(C2xDic3).39C22 = C12:3D4 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).39C2^2 | 96,147 |
(C2xDic3).40C22 = Q8xDic3 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).40C2^2 | 96,152 |
(C2xDic3).41C22 = C12.23D4 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).41C2^2 | 96,154 |
(C2xDic3).42C22 = C22xDic6 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 96 | | (C2xDic3).42C2^2 | 96,205 |
(C2xDic3).43C22 = C2xC4oD12 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).43C2^2 | 96,208 |
(C2xDic3).44C22 = C2xS3xQ8 | φ: C22/C2 → C2 ⊆ Out C2xDic3 | 48 | | (C2xDic3).44C2^2 | 96,212 |
(C2xDic3).45C22 = S3xC42 | φ: trivial image | 48 | | (C2xDic3).45C2^2 | 96,78 |
(C2xDic3).46C22 = C23.16D6 | φ: trivial image | 48 | | (C2xDic3).46C2^2 | 96,84 |
(C2xDic3).47C22 = Dic3:4D4 | φ: trivial image | 48 | | (C2xDic3).47C2^2 | 96,88 |
(C2xDic3).48C22 = Dic6:C4 | φ: trivial image | 96 | | (C2xDic3).48C2^2 | 96,94 |
(C2xDic3).49C22 = Dic3:5D4 | φ: trivial image | 48 | | (C2xDic3).49C2^2 | 96,100 |
(C2xDic3).50C22 = C2xC4xDic3 | φ: trivial image | 96 | | (C2xDic3).50C2^2 | 96,129 |
(C2xDic3).51C22 = C2xQ8:3S3 | φ: trivial image | 48 | | (C2xDic3).51C2^2 | 96,213 |