extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3)⋊1C22 = D6⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):1C2^2 | 96,89 |
(C2×Dic3)⋊2C22 = C23⋊2D6 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):2C2^2 | 96,144 |
(C2×Dic3)⋊3C22 = C24⋊4S3 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):3C2^2 | 96,160 |
(C2×Dic3)⋊4C22 = D4⋊6D6 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 24 | 4 | (C2xDic3):4C2^2 | 96,211 |
(C2×Dic3)⋊5C22 = S3×C22⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):5C2^2 | 96,87 |
(C2×Dic3)⋊6C22 = C2×D6⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):6C2^2 | 96,134 |
(C2×Dic3)⋊7C22 = C2×C6.D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):7C2^2 | 96,159 |
(C2×Dic3)⋊8C22 = C2×S3×D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 24 | | (C2xDic3):8C2^2 | 96,209 |
(C2×Dic3)⋊9C22 = C2×D4⋊2S3 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):9C2^2 | 96,210 |
(C2×Dic3)⋊10C22 = S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 24 | 4 | (C2xDic3):10C2^2 | 96,215 |
(C2×Dic3)⋊11C22 = C22×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3):11C2^2 | 96,219 |
(C2×Dic3)⋊12C22 = S3×C22×C4 | φ: trivial image | 48 | | (C2xDic3):12C2^2 | 96,206 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3).1C22 = C12⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).1C2^2 | 96,76 |
(C2×Dic3).2C22 = C12.6Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).2C2^2 | 96,77 |
(C2×Dic3).3C22 = C42⋊7S3 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).3C2^2 | 96,82 |
(C2×Dic3).4C22 = C42⋊3S3 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).4C2^2 | 96,83 |
(C2×Dic3).5C22 = Dic3.D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).5C2^2 | 96,85 |
(C2×Dic3).6C22 = C23.9D6 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).6C2^2 | 96,90 |
(C2×Dic3).7C22 = Dic3⋊D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).7C2^2 | 96,91 |
(C2×Dic3).8C22 = C12⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).8C2^2 | 96,95 |
(C2×Dic3).9C22 = Dic3.Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).9C2^2 | 96,96 |
(C2×Dic3).10C22 = C4.Dic6 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).10C2^2 | 96,97 |
(C2×Dic3).11C22 = D6.D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).11C2^2 | 96,101 |
(C2×Dic3).12C22 = D6⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).12C2^2 | 96,103 |
(C2×Dic3).13C22 = C4.D12 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).13C2^2 | 96,104 |
(C2×Dic3).14C22 = C12.48D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).14C2^2 | 96,131 |
(C2×Dic3).15C22 = C23.28D6 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).15C2^2 | 96,136 |
(C2×Dic3).16C22 = C12⋊7D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).16C2^2 | 96,137 |
(C2×Dic3).17C22 = C23.23D6 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).17C2^2 | 96,142 |
(C2×Dic3).18C22 = C23.12D6 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).18C2^2 | 96,143 |
(C2×Dic3).19C22 = D6⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).19C2^2 | 96,145 |
(C2×Dic3).20C22 = Dic3⋊Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).20C2^2 | 96,151 |
(C2×Dic3).21C22 = D6⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).21C2^2 | 96,153 |
(C2×Dic3).22C22 = Q8○D12 | φ: C22/C1 → C22 ⊆ Out C2×Dic3 | 48 | 4- | (C2xDic3).22C2^2 | 96,217 |
(C2×Dic3).23C22 = C4×Dic6 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).23C2^2 | 96,75 |
(C2×Dic3).24C22 = C42⋊2S3 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).24C2^2 | 96,79 |
(C2×Dic3).25C22 = C4×D12 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).25C2^2 | 96,80 |
(C2×Dic3).26C22 = C23.8D6 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).26C2^2 | 96,86 |
(C2×Dic3).27C22 = C23.11D6 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).27C2^2 | 96,92 |
(C2×Dic3).28C22 = C23.21D6 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).28C2^2 | 96,93 |
(C2×Dic3).29C22 = S3×C4⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).29C2^2 | 96,98 |
(C2×Dic3).30C22 = C4⋊C4⋊7S3 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).30C2^2 | 96,99 |
(C2×Dic3).31C22 = C12⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).31C2^2 | 96,102 |
(C2×Dic3).32C22 = C4⋊C4⋊S3 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).32C2^2 | 96,105 |
(C2×Dic3).33C22 = C2×Dic3⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).33C2^2 | 96,130 |
(C2×Dic3).34C22 = C2×C4⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).34C2^2 | 96,132 |
(C2×Dic3).35C22 = C23.26D6 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).35C2^2 | 96,133 |
(C2×Dic3).36C22 = C4×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).36C2^2 | 96,135 |
(C2×Dic3).37C22 = D4×Dic3 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).37C2^2 | 96,141 |
(C2×Dic3).38C22 = C23.14D6 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).38C2^2 | 96,146 |
(C2×Dic3).39C22 = C12⋊3D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).39C2^2 | 96,147 |
(C2×Dic3).40C22 = Q8×Dic3 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).40C2^2 | 96,152 |
(C2×Dic3).41C22 = C12.23D4 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).41C2^2 | 96,154 |
(C2×Dic3).42C22 = C22×Dic6 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).42C2^2 | 96,205 |
(C2×Dic3).43C22 = C2×C4○D12 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).43C2^2 | 96,208 |
(C2×Dic3).44C22 = C2×S3×Q8 | φ: C22/C2 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).44C2^2 | 96,212 |
(C2×Dic3).45C22 = S3×C42 | φ: trivial image | 48 | | (C2xDic3).45C2^2 | 96,78 |
(C2×Dic3).46C22 = C23.16D6 | φ: trivial image | 48 | | (C2xDic3).46C2^2 | 96,84 |
(C2×Dic3).47C22 = Dic3⋊4D4 | φ: trivial image | 48 | | (C2xDic3).47C2^2 | 96,88 |
(C2×Dic3).48C22 = Dic6⋊C4 | φ: trivial image | 96 | | (C2xDic3).48C2^2 | 96,94 |
(C2×Dic3).49C22 = Dic3⋊5D4 | φ: trivial image | 48 | | (C2xDic3).49C2^2 | 96,100 |
(C2×Dic3).50C22 = C2×C4×Dic3 | φ: trivial image | 96 | | (C2xDic3).50C2^2 | 96,129 |
(C2×Dic3).51C22 = C2×Q8⋊3S3 | φ: trivial image | 48 | | (C2xDic3).51C2^2 | 96,213 |