Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C22

Direct product G=NxQ with N=C2xDic3 and Q=C22
dρLabelID
C23xDic396C2^3xDic396,218

Semidirect products G=N:Q with N=C2xDic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xDic3):1C22 = D6:D4φ: C22/C1C22 ⊆ Out C2xDic324(C2xDic3):1C2^296,89
(C2xDic3):2C22 = C23:2D6φ: C22/C1C22 ⊆ Out C2xDic324(C2xDic3):2C2^296,144
(C2xDic3):3C22 = C24:4S3φ: C22/C1C22 ⊆ Out C2xDic324(C2xDic3):3C2^296,160
(C2xDic3):4C22 = D4:6D6φ: C22/C1C22 ⊆ Out C2xDic3244(C2xDic3):4C2^296,211
(C2xDic3):5C22 = S3xC22:C4φ: C22/C2C2 ⊆ Out C2xDic324(C2xDic3):5C2^296,87
(C2xDic3):6C22 = C2xD6:C4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3):6C2^296,134
(C2xDic3):7C22 = C2xC6.D4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3):7C2^296,159
(C2xDic3):8C22 = C2xS3xD4φ: C22/C2C2 ⊆ Out C2xDic324(C2xDic3):8C2^296,209
(C2xDic3):9C22 = C2xD4:2S3φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3):9C2^296,210
(C2xDic3):10C22 = S3xC4oD4φ: C22/C2C2 ⊆ Out C2xDic3244(C2xDic3):10C2^296,215
(C2xDic3):11C22 = C22xC3:D4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3):11C2^296,219
(C2xDic3):12C22 = S3xC22xC4φ: trivial image48(C2xDic3):12C2^296,206

Non-split extensions G=N.Q with N=C2xDic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xDic3).1C22 = C12:2Q8φ: C22/C1C22 ⊆ Out C2xDic396(C2xDic3).1C2^296,76
(C2xDic3).2C22 = C12.6Q8φ: C22/C1C22 ⊆ Out C2xDic396(C2xDic3).2C2^296,77
(C2xDic3).3C22 = C42:7S3φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).3C2^296,82
(C2xDic3).4C22 = C42:3S3φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).4C2^296,83
(C2xDic3).5C22 = Dic3.D4φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).5C2^296,85
(C2xDic3).6C22 = C23.9D6φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).6C2^296,90
(C2xDic3).7C22 = Dic3:D4φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).7C2^296,91
(C2xDic3).8C22 = C12:Q8φ: C22/C1C22 ⊆ Out C2xDic396(C2xDic3).8C2^296,95
(C2xDic3).9C22 = Dic3.Q8φ: C22/C1C22 ⊆ Out C2xDic396(C2xDic3).9C2^296,96
(C2xDic3).10C22 = C4.Dic6φ: C22/C1C22 ⊆ Out C2xDic396(C2xDic3).10C2^296,97
(C2xDic3).11C22 = D6.D4φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).11C2^296,101
(C2xDic3).12C22 = D6:Q8φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).12C2^296,103
(C2xDic3).13C22 = C4.D12φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).13C2^296,104
(C2xDic3).14C22 = C12.48D4φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).14C2^296,131
(C2xDic3).15C22 = C23.28D6φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).15C2^296,136
(C2xDic3).16C22 = C12:7D4φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).16C2^296,137
(C2xDic3).17C22 = C23.23D6φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).17C2^296,142
(C2xDic3).18C22 = C23.12D6φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).18C2^296,143
(C2xDic3).19C22 = D6:3D4φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).19C2^296,145
(C2xDic3).20C22 = Dic3:Q8φ: C22/C1C22 ⊆ Out C2xDic396(C2xDic3).20C2^296,151
(C2xDic3).21C22 = D6:3Q8φ: C22/C1C22 ⊆ Out C2xDic348(C2xDic3).21C2^296,153
(C2xDic3).22C22 = Q8oD12φ: C22/C1C22 ⊆ Out C2xDic3484-(C2xDic3).22C2^296,217
(C2xDic3).23C22 = C4xDic6φ: C22/C2C2 ⊆ Out C2xDic396(C2xDic3).23C2^296,75
(C2xDic3).24C22 = C42:2S3φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).24C2^296,79
(C2xDic3).25C22 = C4xD12φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).25C2^296,80
(C2xDic3).26C22 = C23.8D6φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).26C2^296,86
(C2xDic3).27C22 = C23.11D6φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).27C2^296,92
(C2xDic3).28C22 = C23.21D6φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).28C2^296,93
(C2xDic3).29C22 = S3xC4:C4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).29C2^296,98
(C2xDic3).30C22 = C4:C4:7S3φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).30C2^296,99
(C2xDic3).31C22 = C12:D4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).31C2^296,102
(C2xDic3).32C22 = C4:C4:S3φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).32C2^296,105
(C2xDic3).33C22 = C2xDic3:C4φ: C22/C2C2 ⊆ Out C2xDic396(C2xDic3).33C2^296,130
(C2xDic3).34C22 = C2xC4:Dic3φ: C22/C2C2 ⊆ Out C2xDic396(C2xDic3).34C2^296,132
(C2xDic3).35C22 = C23.26D6φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).35C2^296,133
(C2xDic3).36C22 = C4xC3:D4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).36C2^296,135
(C2xDic3).37C22 = D4xDic3φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).37C2^296,141
(C2xDic3).38C22 = C23.14D6φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).38C2^296,146
(C2xDic3).39C22 = C12:3D4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).39C2^296,147
(C2xDic3).40C22 = Q8xDic3φ: C22/C2C2 ⊆ Out C2xDic396(C2xDic3).40C2^296,152
(C2xDic3).41C22 = C12.23D4φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).41C2^296,154
(C2xDic3).42C22 = C22xDic6φ: C22/C2C2 ⊆ Out C2xDic396(C2xDic3).42C2^296,205
(C2xDic3).43C22 = C2xC4oD12φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).43C2^296,208
(C2xDic3).44C22 = C2xS3xQ8φ: C22/C2C2 ⊆ Out C2xDic348(C2xDic3).44C2^296,212
(C2xDic3).45C22 = S3xC42φ: trivial image48(C2xDic3).45C2^296,78
(C2xDic3).46C22 = C23.16D6φ: trivial image48(C2xDic3).46C2^296,84
(C2xDic3).47C22 = Dic3:4D4φ: trivial image48(C2xDic3).47C2^296,88
(C2xDic3).48C22 = Dic6:C4φ: trivial image96(C2xDic3).48C2^296,94
(C2xDic3).49C22 = Dic3:5D4φ: trivial image48(C2xDic3).49C2^296,100
(C2xDic3).50C22 = C2xC4xDic3φ: trivial image96(C2xDic3).50C2^296,129
(C2xDic3).51C22 = C2xQ8:3S3φ: trivial image48(C2xDic3).51C2^296,213

׿
x
:
Z
F
o
wr
Q
<